
AN ENGINEERING METHOD OF NUMERICAL CALCULATION OF 

HEAT TRANSFER AND FRICTION RESISTANCE IN BOUNDARY- 

LAYER LAMINAR AND TURBULENT FLOW IN A TUBE 

Yu, Ya. Pechenegov UDC 536.24 

A simple gradient-balance method is suggested for numerical computation of heat 
transfer and resistance, which is realizable on a microcomputer. 

The high level of detail of flow structure in numerical methods causes their high degree 
of information, and provides the possibility of including the effect of variability of 
physical properties of individual heat carriers and the change in boundary conditions, which 
is not always sufficiently accurately guaranteed by scaling equations, widely used in practical 
calculations of heat transfer and resistance. 

For channel flow the solution of problems of convective transfer is usually realized 
in the boundary-layer approximation. The procedure of numerical solution of the full trans- 
port equations in the boundary layer is quite complicated and awkward, which hinders the use 
of known mathematical models [i, 2, etc.] in engineering calculations. 

A simple is suggested in the present paper for numerical computation of the characteris- 
tics of flow and heat exchange in a boundary layer, easily realizable on a microcomputer, we 
consider hydrodynamic flow stabilization in a circular tube. A wall temprature distribution 
is used which is uniform along the tube perimeter and arbitrary in the flow direction. 

The method is based on using the gradient laws 

dT 
q = k - - ,  ( i )  dy 

d~x 
o :  ~ dy (2) 

the conservation equation of heat carrier mass discharge 

y=O 

2= .f P=~ ( R "  y) @ = G 
Y=R 

(3) 

and the equation describing the distribution of tangential stress along the thickness of the 
boundary layer, having the following form for a circular tube [3] 

Laminar Flow. We conditionally partition the flow region into elementary concentric 
annular subregions (Fig. i). For simplicity the grid step in the y direction is taken to be 
constant, equal to gy = R/n, where n is the number of grid layers. The cross section area of 
the i-th subregion in the diametral tube plane is 

S~ = 2 ~ A y  [R - -  (i - -  0,5) Ayl .  (5) 

For a known flow temperature distribution over the tube radius the velocity distribution 
in the flow and the local value of o w are calculated by simple iterations according to the 
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algorithm of Fig. 2 (the 8-12 block). In the initial portion (x = 0) we choose as first 
approximation any positive value of o w (block 4). In block i0 it is suggested to introduce 
or calculate the quantities ~i and Pi, and determine the velocity by the equation 

w x , z = w x , g _ ~ _ f _ d s w [ 1  - Ay(i--0,5) t Ay (6) 
R ~ ' 

which is obtained by combining (4) and the finite-difference representation of Eq. (2). For 
i = i and Eq. (6) Ay can be replaced by Ay/2. The discharge of heat carriers through the 
cross section is determined in block i0 by the expression 

O* = O,SeiS~ (m~,~ + w~,~_,). (7) 

In block Ii the quantity o w acquires a refinement, and the calculation is repeated with the 
refined value. When the deviation between the real G and the computed G* becomes smaller than 
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an admissible error e, the cycle is exited (block 12). 

Implementing the algorithm discussed on an Elektropika DZ-28 microcomputer, character- 
istic air flows in a tube were computed. The temperature distribution was chosen to be the 
law 

T = T~ A- (T w - -  T~) (1 - -  y l R )  m, ( 8 )  

where  T w and t h e  a x i s  t e m p e r a t u r e  T n v a r i e d  i n  t h e  i n t e r v a l  300-1200~  and t h e  power  m had  
t h e  v a l u e s  0,  0 . 5 ,  1, and 2. The t h e r m o p h y s i c a l  p r o p e r t i e s  o f  a i r  w e r e  s e l e c t e d  f r o m  [ 4 ] .  
Good agreement was obtained between the computation and the analytic solutions represented 
in [5] (Fig. 3a, b). 

It is interesting to note the following. The relative velocity distribution is inde- 
pendent of the variation law of the gas temperature over the cross section, and is uniquely 
determined by the temperature factor Tw/Tm (Fig. 3a). The friction resistance coefficient 
depends neither on the temperature factor, nor on m in (8). The latter dependence is more 
strongly expressed for Tw/T m > 1 than for Tw/T m < i. Since under real flow conditions with 
heat exchange the temperature profile is transformed over the channel length, it is obvious 
that the extent of effect of the temperature factor on the quantity ~ will not be constant. 
This fact is, obviously, one of the reasons noted in [6] of divergences between recommenda- 
tions available in the literature concerning the effect of the temperature factor on the 
resistance of laminar flow. 

The data of [5] coincide with curve 7 in Fig. 3b, since the temperature distribution 
over the cross section of the tube [5] corresponds approximately to the law (8) with m = 0.5. 

Consider the calculation of the characteristics of heat exchange. We write the equation 
of thermal balance for any i-th subregion in the form 

(w=pcp)iS~ (T[ - -  T;) = 2 ~ A ~  [q,_~ (R - -  V~-O - -  qi (R - -  yO]. (9 )  

The thermal conductivity of the liquid in the axial direction is not accounted for here, since 
for Pe > 100 its effect on flow heating (cooling) is negligibly small in comparison with the 
thermal conductivity in the radial direction, and has a substantial value only for liquid 
metal heat carriers [7, 5]. 

C6nsidering simultaneously (9), (5), and the finite-difference representation of (i) 
in the form 
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2 ~ w  
qo = qw - -  

AV 
. . . .  + r ; ,  - v ;  - r ; '  ); 

;V, ( T ~ + T ~ ' - - T / + I - - T ~ + I ) ,  i = 2  . .  n,  

(10) 

after transformations we obtain for the mean temperature at area S i in cross section xj 

r 7  = T ;  -+-. a ( T / ~  q-  T['_~ - -  TI)  - -  b (T;  - -  T / I  , - -  T~'+~) , ( 1 1 )  

l + a + b  

where 

a = k d X i f t ( n - - i +  1); k = 2 for i = I ,  k = I for f = 2 . . .  n ;  

d =  Axj  ; b = d s  i ( n - i ) .  
Ag '2 (wxpc~)i (n  - -  i + 0,5) 

The system of equations (ii) is closed, and totally determines the temperature field at 
cross Section xj for known distributions of w x and T' at cross section xj_ I. 

The convergence and stability of calculations by (ii) depend on the value of the longi- 
tudinal grid step, and therefore involve some restrictions. As a rule, the first step (j = i) 
must be minimal; to it corresponds the maximum variation of the flow temperature in the 
boundary layer zone~ The expression for Axl is found from Eq. (ii), with T~ = T~ = T~, T~ = 
T~ = T w, %1 = %w" Since, for example, in heating the flow we must have T~ ! Tw, after a 
number of transformations and the neglecting of low-order quantities, we obtain the required 
expression 

2Ag  2 
Axl ~ 7 (w~pcph. ( 1 2 )  

~ w  

It follows from (12) that 5x I ~ Ay 2, or 5xi ~ n -2. A reduction of n reduces the ex- 
pense in machine time, but at the same time it must be kept in mind that this is accompanied 
by a reduction in total accuracy, with which the piecewise-homogeneous approximation of the 
model describes the real flow pattern. The practice of our calculations for region of 
moderate temperatures has shown that the effect of n on the results becomes noticeable for 
n < i0. Thus, the difference between qw values, determined for n = i0 and n = 5, is around 
5%. At high thermal loads it is sufficient to take n = 15-20. Over the channel length one can 
increase Axj, which is conveniently done by the geometric progression: 

Axj = Axlz i - l ,  ( 1 3 )  

where the progression quotient can be taken equal to 1.1...1.2. 

The algorithm of calculating the temperature distribution in cross sections xj (Fig. 2, 
blocks 17-23) is constructed with the use of an implicit six-point scheme and the Gauss-Seidel 
method. In blocks ]7 and 19 (as~well as block 14 in the determination of Ax I by (12)) one 
introduces or calculatesthe thermophysica! properties at the corresponding temperatures. 
To calculate T~ in block 19 one uses the dependence (ii), and qw in block 24 is determined 

from (i0). 

The results of calculating the T and q distributions are compared in Figs. 3b, c with the 
Gretz-Nusselt solution [5]. The agreement of the data can be noted for all x/R values. 

Good agreement has also been obtained with the calculations recommended by [5] for local 
and mean heat transfer.in the viscous flow regime, boundary conditions of the first and se- 
cond kind, and physical property variables of heat carriers. 

Turbulent Flow. The basic calculation algorithm remains the same as for laminar flow. 
A special feature consists of the fact that behind the limit of a viscous sublayer, in the 
turbulent core, for viscosity coefficients and the thermal conductivity in (i), (2), (6), (10), 
and (ii) the following effective quantities occur: ~ef = B + Ptb; %ef = % + %ef. 
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Among the known methods of calculating ~tb and Xtb the favorite is that of mixing length 
theory, due to its relative simplicity, physical smoothness, universality, and due to the 
positive exprience in its use [2, 8, 9]. 

Following Prandtl, and taking into account damping of turbulent fluctuations in the boun- 
dary layer, we write the expression for the dynamic coefficient of turbulent viscosity 

~tb = plOD l dw~ ( 1 4 )  
dy' 

where the mixing path s is a purely geometric parameter and is independent of the variability 
of physicochemical properties of thermal carriers, boundary conditions, wall roughness, the 
presence of a pressure gradient in a flow, and other special conditions [2, 9]. The quantity 
s is determined by the equation [i0] 

I/R = 0,16 (y/R) ~176 ( 1 5 )  

which is in good agreement with the well-known experiments by Nikuradze and Reihardt. For 
the damping factor we use the Van-Drist equation [8] 

Dz = [ 1 -- exp ( -- ~/26)] 2, ( 16 ) 

where N is calculated from the wall parameters. 

Simultaneous consideration of (14) and of the law (2), where the effective viscosity 
value is used, makes it possible to write 

_ .  ~ la (17) 
dy 49~l~D~ + 912Dt 291~Dz ' 

~ttb = ~ 0,25 + c S - -  0,5 . (18) ,a S 

The turbulent thermal conductivity coefficient is represented in the form 

~tb = cp~ttbprtb --  ~ Pr,tbPr 0 , 2 5 +  o ~ 0 5  , 

where the turbulent Prandtl number is a parameter independent of the temperature conditions 
of the flow [ii], and is constant in the basic flow regime behind the viscous sublayer [12]. 

For a turbulent flow a characteristic feature is the strong variation of the effective 
values of transport coefficients in y, particularly in the boundary layer. This leads to 
the necessity of using a value of the transverse grid step, substantially smaller than for 
laminar flow. From practical considerations it is advisable that the halfwidth of the first 
computed layer, adjacent to the wall, be found in the viscous sublayer. The total layer 
thickness must then satisfy the condition 

Yl ~< 20 vl .v wVp--ww l~w �9 ( 20 ) 

Since for n ! 6 we practically always have linearity of the profiles of the time-averaged 
temperature and velocity [13], in (20) one put Qvs = 6. In this flow region (~ ! 6) with a 
molecular transport mechanism the thermal flux q = qw = lwdT/dy is a constant quantity, 
independent of y. 

To enhance the stability of calculating heat transfer under conditions of inhomogeneity 
of structure of turbulent flow, it is advisable to include the following additional aspects 
in the algorithm. 

After finding the temperature distribution Ti" in cross section xj (blocks 18-23), the 
thermal flux for the j-th layer is calculated by the equations 

Q? = 2gRAxsq w = 2~RAxj X w (r$ + V~ - -  V[ - -  V[)  ( 2 1 )  
0,5y 1 
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and 
n 

Q** = ~e (~'~ocp)3~ (T;--  T/ ) 
. 

i = l  
(22)  

The real thermal flux is defined as 

Qj = o,5(Q~ + Q;**) (23) 

and Tl" is evaluated more accurately by the expression 

TI" = T w -I- T w - -  T1  Q]yl  
4.~RAxjkw 

(24) 

and Ti" for i = 2, .... n are evaluated more accurately by the algorithm of Fig. 2. ,We then 
find again+ Qi*, Qj**, and Ti". The iterations are concluded when the conditions I(Qj - 
Qj**)/Qjl < e are satisfied. 

This corrective procedure makes it possible, besides, to reduce the calculation error, 
related to the approximation of determining the turbulent component Xef. We note that the 
turbulent components Bef and Xef are accounted for at y ~ Yl. 

Thus, the mathematical model for the case of turbulent flow is augmented by Eqs. (15)- 
(24). Equation (17) is represented in finite-difference form, and is used to calculate the 
velocity distribution in the flow cross section (block i0). For total resolution of the 
model it is necessary to determine the quantity Prtb in Eq. (19), which is difficult to do 
from the recommendations of contradictory nature available in the literature. 

Preliminary calculations of heat transfer, carried out for the case of air flow with 
account of the algebraic relations derived above for a turbulent flow, and comparison of the 
results obtained with experimental data from the literature and the empirical equation for 
local heat transfer [14] 

x h-o,2a (1 -t- 3600 7 x 
(25) 

where 

Nu= = 0,0225 P,e ~ Spr~ 6, (26) 

showed that best convergence was obtained for the variable Prtb depending on the Re number. 
The following approximate relation was obtained from the convergence condition for the 
interval Re = 3.103...106 

Pr~b = 1,2 - -  0,45 exp (--  1,5-10-SRe), (27)  

which does not contradict the general pattern of experimental measurements of various authors 
[12]. For Prtb determined from (27) the calculated Nu numbers differ from (25) by not more 
than 3%. Equation (27) must be considered as a component of the mathematical model of the 
process of heat exchange. 

The adequacy of the model was verified by comparing the calculation results with 
reliable experimental measurements [15-19]. Quite good agreement was obtained both for the 
local (Wx(y) , T(y) [15] and g(x) [16]) and integral flow characteristics. Several comparative 
data are shown in Fig. 4. 

The data of Fig. 4a verify the statement [14] of the possibility of using some dependence 
for the Nu number in terms of the initial portion at T w = const and qw = const, if accompanied 
by a portion of hydrodynamic stabilization. Figure 4b illustrates the good agreement between 
the calculation and experiment for substantially varying physical properties of the gas. 

In using the numerical method no difficulty is encountered in calculating heat transfer 
for cases of arbitrary variation of thermal boundary conditions with the length of the channel 
(Fig. 4c, d). Along with the scaling equations of form (26) one can assign the nature of 
variation of Tw(x) and qw(X), shown in Fig. 4d with a substantial assigned error [19]. 
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Fig. 4. Comparison of calculated distribution of local 
Nu/Nu~ values (a), mean and cross section flow temperature 
(b, c, d), and qw (c, d) over the length of the tube with 
experimental data for various thermal boundary conditions 
at the wall: a, b) air; a) Re = (i-2)-i0~; i, 2, 3) qw = 
const; i) experiments of Depew [17], 2) experiments of 
Sparrow et al. [17]; 3) by (25); 4) calculation, T w = 
400 K = const, Tin 300 K; Nu~ by (26); b) qw = const; 
lines) measurements [18], R = 0.0089 m; primed lines) 
Tw, ~ solid line) T m, ~ points) calculation; 5) Rein = 
2.31-105 , Tin = 296 K; 6)3.4-i0 s, 292 K; 7) 4.38-i0 s, 288K; 
c, d) nitrogen; Re =61.5-103; lines) measurements [9]; points) 
calculation; c) increase of tw with tube length; d) reduc- 
tion of t w with the tube length, t, ~ qw, kW/m2. 

In conclusion, we note that the full calculation of flow and heat transfer in a tube of 
length 5 m, for example, with moderate Re numbers and a grid step uniform in y requires 20- 
30 min (somewhat less for laminar flow) of microcomputer machine time on the Elektropik 
DZ-28. Without loss of computational accuracy, the grid step in the y direction can be 
increased by a geometric progression, whose ratio is taken equal to 1.1-1.2. The computa- 
tion time is reduced in this case by several times. 

We also note that the method suggested makes it possible to effectively solve heat- 
transfer problems in the presence of chemical reactions in the flow. 

NOTATION 

R and L, radius and length of the tube; x, longitudinal coordinate, measured from the 
onset of heating; y, transverse coordinate, measured from the wall; q = Y/Vwaw~, a dimen- 
sionless coordinate; Q and q, thermal flux power and density; c, tangential stress of fric- 
tion; G, heat carrier flux rate; Wx, local value of the axial velocity; T, t, temperature; 
p and cp, density and specific heat capacity of the heat carriers; p, v, dynamic and kine- 
matic vzscosity coefficients; ~, thermal conductivity; AP, pressure drop of the flow; ~ = 
8aw/(PW2), coefficient of friction resistance; = = qw/(Tw- T m) , heat-transfer coefficient; 
s mixing length; and Ds damping factor. The scaling numbers are: Re, Reynolds; Pe, 
Peclet; Pr, Prandtl; and Nu, Nusselt. Subscripts: w, parameter at wall or at wall temperature; 
m, mean mass temperature at tube cross section; in, inlet parameter of heat exchange sec- 
tion; vs viscous sublayer; n, parameter at tube axis; i and j, layer numbers of computed 
grid in the y and x directions, respectively; ' and ", inlet and outlet parameters of elemen- 
tary layer Axj; and * denotes an intermediate (refined in calculation) parameter value. 
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